Math -Tingkatan 1
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, … , 99, 100, 101, …
Millions (juta) | Thousands (ribu) | Units (ratus) | ||||||
1 | 5 | 3 | 8 | 0 | 3 | 5 | 7 | 9 |
Hundred millions | Ten millions | millions | Hundred Thousands | Ten Thousands | Thousands | Hundred | Ten | ones |
2.1 : Corak/Pola Nombor dan Urutannya
Nombor-nombor yang disusun dalam corak tertentu dikenali sebagai urutan (sequence).
Corak urutan nombor (number sequence) boleh ditentukan dengan menambah, menolak, mendarab atau membahagikan ‘nombor dalam urutan yang sebelumnya’, dengan bilangan/nombor-nombor tertentu.
Urutan Fibonacci (Fibonacci Sequence)
Ahli matematik telah mengkaji corak selama berabad-abad. Corak nombor 1, 1, 2, 3, 5, 8, …dipanggil urutan Fibonacci.
Urutan ini bermula dengan 1, 1 dan setiap selepas sebutan (term) yang kedua, diperolehi dengan menambah dua sebutan (term) sebelumnya yang terdapat dalam urutan.
Menggambarkan corak/pola urutan nombor
Gambarkan corak setiap urutan nombor berikut:
- 5, 12, 19, 26, …Jwb:Corak urutan nombor 5, 12, 19, 26, … diperolehi dengan menambah (adding) 7 pada nombor sebelumnya (nombor dalam urutan).
- 1, 4, 16, 64, …Jwb:Corak urutan nombor 1, 4, 16, 64, … diperolehi dengan mendarabkan (multiplying) nombor dalam urutan sebelumnya dengan 4.
- 40, 35, 30, 25, …Jwb:
Corak urutan nombor 40, 35, 30, 25, … diperolehi dengan menolakkan (subtracting) 5 dari nombor sebelumnya (nombor dalam urutan). - 144, 72, 36, 18, ..
- Jwb:Corak urutan nombor 144, 72, 36, 18, … diperolehi dengan membahagikan (dividing) nombor dalam urutan sebelumnya dengan
2.2 : Nombor Ganjil dan Genap
Nombor 1, 3, 5, 7, … dikenali sebagai nombor ganjil (odd numbers).
Nombor 2, 4, 6, 8, … dikenali sebagai nombor genap (even numbers).
Mengenal pasti dan menerangkan nombor ganjil dan genap.
Contoh 1:
Kenal pasti serta nyatakan kesemua nombor ganjil dan genap yang terdapat dalam urutan nombor 16, 21, 26, 31, …, 71.
Jwb:
Nombor-nombor ganjil adalah 21, 31, 41, 51, 61 dan 71. Nombor-nombor ini membentuk satu urutan nombor yang diperolehi dengan menambah 10 pada nombor sebelumnya.
Nombor genap 16, 26, 36, 46, 56 dan 66. Nombor-nombor ini membentuk satu urutan nombor yang diperolehi dengan menambah 10 pada nombor sebelumnya.
Contoh 2:
3 + 5 = 8
7 + 13 = 20
19 + 25 = 24
Penyataan am mengenai jumlah / hasil tambah dua nombor ganjil.
Nombor Ganjil + Nombor Ganjil = Nombor Genap
Hasil tambah dua nombor ganjil adalah nombor genap.
2.3 : Nombor Perdana
Nombor perdana (prime number) adalah nombor bulat yang hanya boleh dibahagikan dengan dirinya sendiri dan nombor 1 (the number itself and number 1). Oleh itu, nombor perdana mempunyai hanya dua pembahagi (nombor itu sendiri dan nombor 1).
Nombor perdana terkecil ialah nombor 2, satu-satunya nombor genap yang merupakan nombor perdana.
Nombor perdana yang kurang daripada 50 adalah 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43 dan 47.
Nombor 1 adalah BUKAN nombor perdana (NOT a prime number).
Menentukan samada nombor yang diberi adalah nombor perdana
Contoh:
Tentukan samada setiap nombor berikut adalah nombor perdana.
- 13Jwb:13 ÷ 1 = 1313 ÷ 13 = 113 hanya boleh dibahagi dengan 1 dan 13 → (2 pembahagi/divisors)Oleh itu, 13 adalah nombor perdana.
51
Jwb:
51 ÷ 1 = 51
51 ÷ 3 = 17
51 ÷ 17 = 3
51 ÷ 51 = 51
51 boleh dibahagi dengan 1, 3, 17 dan 51 → (4 pembahagi/divisors)
Oleh itu, 51 bukan nombor perdana.
2. 4 : Faktor
Faktor (factor) suatu nombor bulat yang diberi adalah, nombor yang boleh dibahagikan dengan nombor tersebut dengan tepat.
1 dan nombor itu sendiri adalah faktor kepada sebarang nombor yang diberi.
Menyenaraikan faktor nombor bulat.
Contoh:
Cari semua faktor bagi:
- 18Jwb:18 ÷ 1 = 1818 ÷ 2 = 918 ÷ 3 = 618 ÷ 6 = 318 ÷ 9 = 218 ÷ 18 = 118 boleh dibahagikan dengan 1, 2, 3, 6, 9 dan 18. Oleh itu, faktor kepada 18 adalah 1, 2, 3, 6, 9 dan 18.
- 50Jwb:50 ÷ 1 = 5050 ÷ 2 = 2550 ÷ 5 = 1050 ÷ 10 = 550 ÷ 25 = 250 ÷ 50 = 150 boleh dibahagikan dengan 1, 2, 5, 10, 25 dan 50. Oleh itu, faktor kepada 50 adalah 1, 2, 5, 10, 25 dan 50.
Menentukan samada suatu nombor itu adalah faktor kepada nombor bulat yang lain.
Contoh:
Tentukan samada;
- 7 adalah faktor kepada 119.Jwb:119 ÷ 7 = 17119 boleh dibahagikan dengan tepat oleh 7. Oleh itu, 7 adalah factor kepada 119.
4 adalah faktor kepada 599.
Jwb:
599 tidak boleh dibahagi dengan tepat oleh 4. Oleh itu, 4 adalah bukan faktor kepada 599.
2.5 : Faktor Perdana
Faktor perdana (prime factor) bagi suatu nombor bulat adalah, nombor perdana yang merupakan faktor kepada nombor tersebut.
Mengenal pasti faktor perdana dari senarai faktor.
Contoh:
Diberi 1, 2, 4, 7, 8, 14 dan 56 ada faktor kepada 56. Kenal pasti semua faktor perdana kepada 56.
Jwb:
Antara faktor kepada 56, 2 dan 7 adalah nombor perdana. Oleh itu, faktor perdana kepada 56 adalah 2 dan 7.
Mencari faktor perdana nombor bulat.
Contoh:
Dapatkan faktor perdana nombor berikut:
- 100Kaedah 1 – Senaraikan semua faktor kepada 100.Faktor kepada 100 adalah 1, 2, 4, 5, 10, 20, 25, 50 dan 100. Antara semua faktor tersebut, 2 dan 5 adalah nombor perdana. Oleh itu, faktor perdana kepada 100 adalah 2 dan 5.Kaedah 2 – Menggunakan algoritma (pembahagian berulang oleh faktor perdana).Oleh itu, faktor perdana kepada 100 adalah 2 dan 5.Kaedah 3 – Menggunakan gambarajah pokok (factor tree diagram).Daripada gambarajah, faktor perdana kepada 100 adalah 2 dan 5.
72
Kaedah 1 – Senaraikan semua faktor kepada 72.
Faktor kepada 72 adalah 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 dan 72. Antara semua faktor tersebut, 2 dan 3 adalah nombor perdana. Oleh itu, faktor perdana kepada 72 adalah 2 dan 3.
Kaedah 2 – Menggunakan algoritma (pembahagian berulang oleh faktor perdana).
Oleh itu, faktor perdana kepada 72 adalah 2 dan 3.
Kaedah 3 – Menggunakan gambarajah pokok (factor tree diagram).
Daripada gambarajah, faktor perdana kepada 72 adalah 2 dan 3.
2.6 : Gandaan
Gandaan (multiples) sesuatu nombor bulat adalah produk daripada nombor tersebut dengan mana-mana nombor bulat yang lain, kecuali sifar (zero).
Gandaan nombor n adalah dalam bentuk nk, di mana k = 1, 2, 3, 4, …
Sebagai contoh, Gandaan 3 = 3 x 1, 3 x 2, 3 x 3, 3 x 4, …
Sebagai contoh, Gandaan 3 = 3 x 1, 3 x 2, 3 x 3, 3 x 4, …
Ujian keterbahagian (divisibility test)
Pembahagi | Kaedah | Contoh |
2 | Digit terakhir (unit nilai tempat) sesuatu nombor adalah 0, 2, 4, 6 atau 8. | 90, 152, 3 866, 5 478 |
3 | Hasil tambah semua digit nombor tersebut boleh dibahagi dengan 3. | 249 (2 + 4 + 9) ÷ 3 = 15 ÷ 3 = 5 |
4 | Nombor yang dibentuk oleh dua digit terakhir nombor tersebut boleh dibahagi dengan 4 atau adalah sifar. | 7 21616 ÷ 4 = 4 |
5 | Digit terakhir (unit nilai tempat) nombor tersebut adalah 0 atau 5. | 480, 3 625 |
6 | Nombor tersebut boleh dibahagi dengan 2 dan 3. | 738 (7 + 3 + 8) ÷ 3 = 18 ÷ 3 = 6 |
8 | Nombor yang dibentuk oleh tiga digit terakhir nombor tersebut boleh dibahagi dengan 8. | 53 288 |
9 | Hasil tambah semua digit nombor tersebut boleh dibahagi dengan 9. | 4 302 (4 + 3 + 0 + 2) ÷ 9 = 9 ÷ 9 = 1 |
10 | Digit terakhir (unit nilai tempat) nombor tersebut adalah 0. | 560, 29 710 |
Menyenaraikan gandaan nombor bulat
Contoh 1:
Senaraikan lima gandaan pertama bagi;
- 2
Jwb:
= 2 x 1, 2 x 2, 2 x 3, 2 x 4, 2 x 5
= 2, 4, 6, 8, 10 - 5
Jwb:
= 5 x 1, 5 x 2, 5 x 3, 5 x 4, 5 x 5
= 5, 10, 15, 20, 25 - 9
Jwb:
= 9 x 1, 9 x 2, 9 x 3, 9 x 4, 9 x 5
= 9, 18, 27, 36, 45 - 15
Jwb:
= 15 x 1, 15 x 2, 15 x 3, 15 x 4, 15 x 5
= 15, 30, 45, 60, 75
2.7 : Gandaan Sepunya dan Gandaan Sepunya Terkecil (GSTK)
Gandaan Sepunya (common multiples) set nombor bulat yang diberi adalah gandaan setiap nombor tersebut dalam set.
Gandaan Sepunya Terkecil, GSTK (lowest common multiple, LCM) beberapa nombor yang diberikan adalah gandaan sepunya terkecil nombor-nombor tersebut.
* Konsep ‘gandaan’ dan ‘faktor’ adalah bertentangan.
Contohnya;
Contohnya;
30 adalah gandaan bagi 1, 2, 3, 5, 6, 10, 15 dan 30.
Manakala, 1, 2, 3, 5, 6, 10, 15 dan adalah factor kepada 30.
Mencari gandaan sepunya bagi dua atau tiga nombor bulat.
Contoh 1:
Dapatkan gandaan sepunya bagi;
- 3 dan 4.
Jwb:
Gandaan bagi 3: 3, 6, 9, 12, 15, 18, 21, 24, …
Gandaan bagi 4: 4, 8, 12, 16, 20, 24, 28, …
Gandaan Sepunya bagi 3 dan 4 adalah 12, 24, 36, … - 2, 3 dan 6.
Jwb:
Gandaan bagi 2: 2, 4, 6, 8, 10, 12, 14, 16, 18, …
Gandaan bagi 3: 3, 6, 9, 12, 15, 18, 21, …
Gandaan bagi 6: 6, 12, 18, 24, 36, …
Gandaan Sepunya bagi 2, 3 dan 6 adalah 6, 12, 18, …
** Senarai gandaan sepunya beberapa nombor bulat adalah juga dari urutan nombor.
Menentukan samada suatu nombor itu adalah gandaan sepunya bagi dua atau tiga nombor bulat yang diberi.
Contoh 2:
Tentukan samada;
- 84 adalah gandaan sepunya bagi 5 dan 7.
Jwb:
84 ÷ 5 = 16 berbaki 4
84 ÷ 7 = 12
84 tidak boleh dibahagi tepat dengan 5.
Oleh itu, 84 adalah bukan Gandaan Sepunya bagi 5 dan 7. - 432 adalah gandaan sepunya bagi 6, 8 dan 9.
Jwb:
432 ÷ 6 = 72
432 ÷ 8 = 54
432 ÷ 9 = 48
432 boleh dibahagi tepat dengan 6, 8 dan 9.
Oleh itu, 432 adalah Gandaan Sepunya bagi 6, 8 dan 9.
Menentukan GSTK (LCM) bagi dua nombor bulat.
Contoh 3:
Cari Gandaan Sepunya Terkecil bagi;
- 9 dan 12Jwb:Kaedah 1: Pemfaktoran Perdana (Prime Factorisation)
- 15 dan 21Jwb:Kaedah 1: Pemfaktoran Perdana (Prime Factorisation)
Faktor Sepunya (common factors) beberapa nombor bulat adalah nombor yang merupakan faktor setiap nombor-nombor tersebut.
Faktor Sepunya Terbesar, FSTB (Highest Common Factor, HCF) beberapa nombor yang diberi adalah nombor terbesar yang merupakan faktor setiap nombor-nombor tersebut.
Mencari faktor sepunya bagi dua atau tiga nombor bulat.
Contoh 1:
Cari faktor sepunya bagi;
- 18 dan 54.Jwb:Faktor bagi 18: 1, 2, 3, 6, 9, 18Faktor bagi 54: 1, 2, 3, 6, 9, 18, 27, 54Faktor Sepunya bagi 18 dan 54 adalah 1, 2, 3, 6, 9 dan 18.
- 9, 15 dan 21.Jwb:Faktor bagi 9: 1, 3, 9Faktor bagi 15: 1, 3, 5, 15Faktor bagi 21: 1, 3, 7, 21Faktor Sepunya bagi 9, 15 dan 21 adalah 1 dan 3.
Menentukan samada suatu nombor itu adalah faktor sepunya bagi dua atau tiga nombor yang diberi.
Contoh 2:
Tentukan samada;
- 12 adalah faktor sepunya bagi 84 dan 156.Jwb:84 ÷ 12 = 7156 ÷ 12 = 13Oleh itu, 12 adalah faktor sepunya bagi 84 dan 156.
- 4 adalah faktor sepunya bagi 32, 70 dan 112.Jwb:32 ÷ 4 = 870 ÷ 4 = 17 berbaki 2112 ÷ 4 = 28Oleh itu , 4 adalah bukan faktor sepunya bagi 32, 70 dan 112.
Menentukan Faktor Sepunya Terbesar (FSTB) bagi dua nombor bulat.
Contoh 3:
Dapatkan faktor sepunya terbesar bagi;
- 28 dan 32.
Jwb:
Kaedah 1: Senaraikan semua faktor bagi setiap nombor.
Faktor bagi 28: 1, 2, 4, 7, 14, 28
Faktor bagi 32: 1, 2, 4, 8, 16, 32
Oleh itu, faktor sepunya terbesar bagi 28 dan 32 adalah 4.Kaedah 2: Penggunaan algoritma (pembahagian berulang oleh faktor sepunya).
Faktor sepunya terbesar bagi 28 dan 32 adalah = 2 x 2 = 4. - 15 dan 24.
Jwb:
Kaedah 1: Senaraikan semua faktor bagi setiap nombor.
Faktor bagi 15: 1, 3, 5, 15
Faktor bagi 24: 1, 2, 3, 4, 6, 8, 12, 24
Oleh itu, faktor sepunya terbesar bagi 15 dan 24 adalah 3.Kaedah 2: Penggunaan algoritma (pembahagian berulang oleh faktor sepunya).
Oleh itu, faktor sepunya terbesar bagi 15 dan 24 adalah 3.
Menentukan Faktor Sepunya Terbesar (FSTB) bagi tiga nombor bulat.
Contoh 4:
Dapatkan faktor sepunya terbesar (FSTB) bagi;
Contoh 4:
Dapatkan faktor sepunya terbesar (FSTB) bagi;
- 40, 48 dan 56.
Jwb:
* Pembahagian dihentikan kerana 5, 6 dan 7 tidak mempunyai faktor sepunya yang lain daripada 1.Oleh itu,Faktor Sepunya Terbesar (FSTB) bagi 40, 48 dan 56
= 2 x 2 x 2
= 8 - 70, 84 dan 126.
Jwb:
** Pembahagian dihentikan kerana 5, 6 dan 9 tidak mempunyai faktor sepunya yang lain daripada 1.Oleh itu, Faktor Sepunya Terbesar (FSTB) bagi 70, 84 dan 126
= 2 x 7
= 14.
Comments
Post a Comment